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2 Investigation area 
The continental shelf of the Andaman Sea adjacent to the Malay Peninsula is narrow and slightly 
inclined; the 50 m isobaths is reached approximately 7 km offshore Phuket and about 30 km offshore 
Phang Nga Province located towards north. The coastal area is dominated by rocky cliffs altering with 
sandy lowlands and pocket beaches. From December to February the NE-monsoon dominates while 
the SW-monsoon is active from May to September (Khokiattiwong et al. 1991). The influence of 
storms and typhoons on this part of Thailand’s coastline is low (Kumar et al. 2008, Jankaew et al. 
2008). The tide is mixed semidiurnal, ranging between 1.1 m and 3.6 m (Thampanya et al. 2006). 
 

 

Figure 1: The research area is located in front of Khao Lak, Phang Nga province, Thailand. 

The research area, between Thap Lamu and Phra Thong Island comprises of approximately 1.000 km² 
(figure 1). It was selected as it was hit severely by the 2004-Indian-Ocean-Tsunami (Bell et al. 2005, 
Tsuji et al. 2006). The wave run-up heights reached more than 15 m at Pakarang Cape (Siripong 2006) 
and up to 20 m at Phra Thong Island (Jankaew et al. 2008). At Pakarang Cape an area of about 12.500 
m² was eroded by the tsunami (Synolakis & Kong 2006) and hundreds of reef rocks could be observed 
on the intertidal area after the event (Goto et al. 2007). For the investigation area the fluvial discharge 
is small, which increases the preservation potential of tsunamigenic features on the seafloor. 

3 Methods 
Two cruises have been carried out; a first one in Nov./Dec. 2007 with RV CHAKRATONG 
TONGYAI and a second with RV BOONLERT PASOOK in Nov./Dec. 2008. Both ships are operated 
by the Phuket Marine Biological Center (PMBC). Different side scan sonar systems were applied; a 
Klein 595 with digital data acquisition in 2007 and a Benthos 1624 digital side scan sonar system in 
2008. Side scan sonar systems measure acoustical properties of the seafloor, which mainly depend on 
grain size distribution, seafloor roughness and the angle of the seafloor slope (Lurton 2002). Features 
protruding from the seafloor, e.g. boulders, but as well large ripples are easily recognized in side scan 
sonar images due to the acoustic shadow formed behind them. In this study, fine grained deposits 
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appear in lighter colours, while coarse grained material is represented by darker colours. For ground-
truthing of the side-scan sonar data grab samples were taken on selected positions.  
A shallow water multibeam echosounder (ELAC SeaBeam 1185) was used to acquire bathymetric 
data. Multibeam echo sounders provide many simultaneous depth measurements over a narrow section 
of the seafloor. The SeaBeam 1185 system is working with a frequency of 180 kHz, which is suitable 
for a high resolution mapping in shallow waters. The acoustic beam of the system has a fan width of 
153°, giving a theoretical swath width of 8.3 times the water depths. Calibration for tidal fluctuations 
was done by using the software WX-Tide32 (www.wxtide32.com), as no direct water level 
measurements are available in or close to the research area.  
Shallow water high resolution reflections seismics (C-Boom System), in combination with the 
recovery of short gravity cores, was used to obtain information about the uppermost layers of the 
seafloor. X-radiography images of thin slabs taken from the core surface were prepared to detect 
sedimentary structures that cannot be seen otherwise (Jackson et al. 1996). The database of the cruises 
carried out in 2007 and 2008 include about 1500 nautical miles (nm) of hydroacoustic profiles, 112 
Surface sediment samples and 42 short sediment cores.  

4 Results 
Side scan sonar images offshore Khao Lak show several different sedimentary structures in depths 
from 7 to 30 m (figure 2). In water depths between 7 and 15 m, extended patches of fine grained 
sediments are deposited. Connected to these patches is a small scale channel system starting at 10 m 
water depth. Here we focus on structures appearing at 15 m water-depth. Elongated SW-NE striking 
morphological ridges are visible in the hydroacoustic data (Figure 2). These structures are common 
along the whole coastline between Thap Lamu and Pakarang Cape, and up to Phra Thong Island 
towards north. The continuation of the ridges into deeper waters is yet unknown. The ridges, with a 
steep NW- and a gently dipping SE flank reach heights of about 2 m, while their length exceeds 
several kilometres. The distance between two ridge crests varies from several hundred meters to 
several kilometres. In front of the steep north-eastern side of these ridges, small channels with incision 
depths of approximately 1 m are sometimes cut into the seafloor. According to seismic data, the ridges 
are not connected to subsurface structures, but are clearly separated from the sedimentological 
structures below by an unconformity (figure 5).  
For one ridge, a side scan sonar mosaic was draped over the bathymetry (figure 3) to correlate 
sedimentology and morphology. Grab samples taken around the ridge (figure 3) reveal the presence of 
different sediment properties in a small area: Generally, the south-western, landward flank of the ridge 
and the surface of the seafloor surrounding the ridge are composed of coarse sand. Bright elongated 
sediment structures are deposited on the seaward flank of the ridge and are composed of well sorted 
fine to medium sand. The patches are separated from each other by thin bands of coarser sediment. 
From their appearance in the side scan sonar image, the structures resemble large-scale flaser 
beddings. However, as the genesis of the observed features is different to flaser beddings, which are 
formed due to tidal activities, the term will not be used. 
The sediment patches are commonly observed on the seaward, northern flank of sand ridges along the 
coastline. Rarely, they are found on the flat seafloor. Boulders are sometimes exposed in close vicinity 
(figure 3, figure 4). At the base of the ridge flank shown in figure 3, grab samples contain muddy 
material just a few centimetres below the seafloor. 
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Figure 2: Side scan sonar data around Pakarang Cape. Sampling stations and the positions of fig. 3 and fig. 4 
are indicated. Sediment core 051207-37 is shown in fig. 7. This article is focusing on SW-NE striking 
sediment structures visible as lighter-coloured bands in the side-scan sonar image (a). Closer to the 
coastline, extended areas of fine grained sediment (b) and a small scale channels (c) are visible.  

Core 051207-37 (figure 7) is divided in four sedimentary units. Unit 1 (0-8 cm core depth) is mainly 
composed of brown sand, including some shell fragments. Between 8 and 11 cm, a layer composed of 
silt, containing no sand, is apparent (unit 2). The lower boundary of unit 2 is sharp, while its upper 
boundary is not well defined. Between app. 11 to 12 cm core depth, unit 3A is composed of well 
sorted sand. Below, unit 3B (12 to 20 cm core depth) contains higher amounts of clay and silt. Various 
shell fragments are abundant in unit 3B. From 20 cm to the base of the core, unit 4 is composed of 
sandy silt, and includes some shell fragments. Partly, layers containing higher amounts of sediments in 
the sand fraction are recognized in the x-ray images. 
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Figure 3: Side scan sonar draped over the bathymetric dataset. For position see figure 2. The length of the ridge 
is approx. 1500 m (perspective view). a) elongated sediment patches, consisting of fine to medium 
sand b) coarse sand c) carbonatic gravel and boulders (notice video image) d) sand at the surface, 
muddy material below e) position of short core (051207-37, fig. 7), composed of sandy material on 
top and a fine grained layer at 10 cm depth. 

5 Discussion 
Sand ridges are formed due to regular hydrodynamic processes, e.g. tidal currents in inlets, ocean 
currents at the shelf margin or during storms (Ernstsen et al. 2006, Flemming 1978, Holland & Elmore 
2008), although moribund ridges as remnants from times with a lower sea level are known (Dyer & 
Huntley 1999). Goff et al. (1999) report that sand ridges on the northeast US Atlantic shelf are 
asymmetric, having steeper seaward flanks. Holland & Elmore (2008) report that grain sizes across 
sand ridges typically range from coarse to fine sand. The typical height of storm generated sand ridges 
is given with 3 to 12 m (van de Meene & van Rijn 2000). Commonly, sand ridges are oblique to the 
coastline, with the acute angle opening into the prevailing flow direction (Swift et al. 1978, Holland & 
Elmoore 2008). Most of these features are found in the observed ridge system. The strike direction of 
the ridges indicates an approximately south-north directed current which was responsible for their 
formation. This was not the main current direction observed during the tsunami (images of the 
IKONOS satellite, Goto et al. 2007). Therefore, the ridge system existed prior to the tsunami, although 
the definite process responsible for its formation has not yet been identified.  
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Figure 4: Elongated sedimentary structures offshore Phra Thong. Frequently, boulders are exposed in close 
vicinity to these structures. Water depth at A: 27 m. Water depth at B: 21 m. 

Notable are elongated sediment patches commonly found on the northern flanks of the sand ridges. 
While finer sediment on the steeper slope of asymmetrical sand ridges is common, in front of storm 
dominated coasts (Holland & Elmore 2008). Here fine sediments are not visible over the entire length 
of the flank, but instead they are deposited in small patches separated by coarser sediment. Similar 
bedforms on the continental shelf offshore Brazil have been formed due to storm events (Moscon & 
Bastos 2010). The comparison of side scan sonar images from 2007 and 2008 (figure 6) indicates that 
the general shape of the patches is preserved, but smaller parts begin to fade during one annual cycle, 
indicating an out-of-equilibrium event based deposition and ongoing reworking of the sediment. 
Additionally, the existence of identical sediment structures on the flat seafloor further indicates that 
their formation is not connected with the formation of the sand ridges. Therefore these elongated 
patches of fine grained sediment have to be interpreted as bedforms created by currents along the 
north-east/south-west direction. The general stability of these bedforms, combined with the slow 
fading of delicate structures suggests that no frequently occurring event is responsible for their 
formation. Since strong storms are rare in the area, and none occurred between the 2004 tsunami and 
our measurements (based on tracks published by the Regional Specialised Meteorological Centre – 
Tropical Cyclones (RMSC), New Delhi), it is reasonable to assume that the observed sediment pattern 
was influenced by the 2004 tsunami, either during the run-up or the backwash. 
 
It is assumed that the muddy material frequently found in grab samples at the base of the sand ridge 
corresponds to unit 2 in core 051207-37. Therefore, such material is present over a larger area at the 
base of the sand ridge, and not only locally in one core. Considering the silt separating two units of 
coarse sand, its deposition likely corresponds to a single event. Similar deposits in cores offshore the 
Eel River have been described by Crocket & Nittrouer (2004) as flood deposits, which could be 
generated in the research area by strong monsoon events. But also a tsunami backwash transports large 
amounts of fine-grained material offshore (Shi & Smith 2003). The process responsible for the 
formation cannot be determined with certainty. However, a deposition of this material during the 
monsoon is unlikely, as more regularly occurring structures would be expected. Regardless of the 
origin of their formation, these event deposits were preserved in the comparably sheltered 
environments at the base of the sand ridges. They are covered by coarse sand (unit 1), typical for this 
area of the shelf, indicating some sediment dynamics in the area. This agrees to the change of 
sedimentological boundaries observed in side scan sonar mosaics between 2007 and 2008 (figure 6). A 
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potential deposition of the sediments beneath unit 2 during an event, indicated for instance by the 
marked change in sand content of unit 3A compared to unit 3B, or the abundance of shell fragments in 
unit 3B, is uncertain. Further analysis is needed to identify the origin and the spatial extension of these 
potential tsunami deposits, especially closer towards the shoreline. 
 
Interesting are frequent observations of boulders close to the elongated patches deposited at the 
seaward flank of the sand ridges. Many of these boulders show no connection to structures in the 
subsurface, and must have been transported to their current position. Potentially, this could have 
happened during the tsunami, either during the run-up from source areas in deeper waters, or during 
the backwash (compare Paris et al. 2009)  
 

 

Figure 5: Seismic profile crossing a sand ridge (for position see Figure 2). Clearly visible is the asymmetric 
form of the ridge which is indicating a transport direction from South to North. Additionally, the 
ridge is separated from the older surface below by an unconformity.  

 

Figure 6: Two side-scan sonar images showing a comparison of a detail of the sand ridge shown in figure 3. 
The left image was recorded in 2007, the right image in 2008. Small differences are visible. The 
contours of the elongated sedimentary structures are more pronounced in 2007. 

During the tsunami run-up, many boulders were transported towards the intertidal area on Pakarang 
Cape (Goto et al. 2007). The backwash at Pakarang Cape was modelled by Goto et al. (2007). The 
authors show that the current speed of the backwash was in the order of 3m/s. This is strong enough to 
move the observed boulders (Goto et al. 2007, Imamura et al. 2008), which have a diameter of less 
than 1 meter according to underwater images. Taking into account a channelized backwash (Le Roux 
& Vargas 2005, Fagherazzi & Du 2007), it is possible that in some areas the current speed was strong 
enough to transport boulders downslope from the reef platform fringing Pakarang Cape back towards 
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the sea. However, this cannot explain the presence of boulders found several kilometers offshore (Fig. 
4).  

 

Figure 7: Properties of core 051207-37. From left to right, photo, x-ray image, first mode in phi-degrees, sand 
content and sedimentary units are presented. For position, refer to Fig.2. 

6 Conclusion 
Detailed hydroacoustic surveys have been carried out offshore Phang Nga province (Thailand) in 2007 
and 2008 and sediment samples have been collected. Starting at 15 m water depth, a system of sand 
ridges, formed by coarse sand, was discovered. The sand ridges existed prior to the 2004 Indian Ocean 
Tsunami. Elongated sediment patches on the seaward flank of the sand ridges consist of fine to 
medium sand, and indicate a current oblique to the coastline. They fade slowly during the annual 
cycle, and were potentially reworked during the 2004 Indian Ocean Tsunami. An event layer found at 
the base of a sand ridge is composed of silty sediment, which could be related to the tsunami 
backwash or floods during the monsoon. These event deposits are covered by coarse sand, and might 
enter the geological record. 
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